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S U M M A R Y  
A variational principle governing the frictionless contact between two elastic bodies is established, which is valid both 
for linear and for non-linear elasticity. In the case of linear elasticity it appears to lead to an infinite dimensional convex 
quadratic programming problem. It is applied to the half-space geometry in linear elasticity and it is established that 
non-Hertzian normal half-space contact problems are physically meaningful. 

A Hertzian and a non-Hertzian normal contact problem are investigated numerically, to which end the principle is 
discretised on a triangular network. In the case of the Hertz problem it is found that the exact relationships between 
penetration, maximum pressure, and total normal force are well satisfied. The form of the contact area is given only 
crudely, unless the discretisation network is considerably refined. It appeared that such a refinement is only necessary 
close to the edge, in which case passable results will be obtained. 

1. Introduction 

When two elastic bodies are pressed together, then, as a consequence of their elastic properties, 
an area will be formed where they are in contact. If there is no friction between the bodies in 
this contact area, the contact stress must be normal to the boundary of the bodies. This type of 
contact, which is dealt with in this paper, is called normal contact. 

When the geometry of the surfaces of both the bodies, their elastic properties, and the total 
compressive force or the undeformed penetration of both the bodies into each other are given, 
the objective is to find the contact area and the pressure acting in it. 

The uniqueness of the solution of this problem in the case of linear elasticity has been proved 
by Kalker [-1]. 

Even in the simplest case, that is, when the bodies are considered to be elastic half spaces, 
the solution of this problem has only been given for special geometries of the surfaces of both 
the bodies. 

Hertz (1881) gave an analytical solution for quadratic surfaces (see Love [2] p. 193-198), 
and Galin [-3] described solutions, obtained by various authors, for more complicated surfaces, 
but with a given boundary of the contact area. 

In the present paper a numerical method will be given which, in principle, is applicable to 
any kind of geometry of the contacting bodies. 

However, the method utilises the normal surface displacement field due to a concentrated 
normal load, which is known in readily computable form only for a limited class of geometries 
of which the half space is a pre-eminent member. Indeed, the examples treated in this paper 
(sect. 3 and 4) are half space problems in the linear theory of elasticity. 

The method is based upon mathematical programming theory and practice. The connection 
between one-sided constraints in mechanics and mathematical programming was pointed out 
earlier by Moreau, see, e.g., [8]. 

The connection between mathematical programming and the normal contact problem is 
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the theme of a recent paper by Conry and Seireg [9], which appeared after we finished our 
researches. Their point of departure is eq. (24a) of the present paper, 

P>O,  p>O, Pp=O in D (a) 

D" region of the surface of the lower body containing the contact area; 
P: pressure exerted by the bodies on each other at the surface; 
p" distance of a point of the lower body to the upper, taken positive when no penetration 

takes place. 
Note that in (a) no distinction is made between the contact area and the surface of the bodies 

outside it: the contact area is a result of the calculation. Both our method and the method of 
Conry and Seireg possess this characteristic feature. 

In [9], the problem (a) is transformed to a quadratic programming problem in the following 
manner. Equivalent to (a) is the system 

P>O,  p>__O, f PpdA=O, (b) 
3 D 

and equivalent to system (b) is, under the supposition that a solution of (a) exists, 

>__0, p>O, f PpdA= P minimal (c) 
3 D 

An argument of this type was given before in [10] p. 32. Since in the case of linear elasticity, 
to which Conry and Seireg confine themselves, the distance p is a first-degree functional of the 
pressure P, (c) is a quadratic programming problem of which they prove strict convexity, and 
hence uniqueness of the solution. 

Viewed as a quadratic programming problem the system (c) has the disadvantage that it 
contains many constraints, for, apart from the constraints P > 0, there are the constraints that 
p > 0 in every point under consideratio0. Consequently Conry and Seireg successfully develop 
a modification of the simplex algorithm of linear programming by means of which the relations 
(a) can be solved directly. 

In the present paper the point of departure is that the internal energy of a system of elastic 
bodies under isentropic conditions is minimal, together with the non-penetration property 
p___0. 

This leads to a mathematical programming problem of which the relations (a), (24a) are the 
Kuhn-Tucker relations characterising a minimum. 

When the constitutive equations of the bodies are linear, a quadratic programme is obtained 
which is very similar to (c), but in which the relations p > 0 do not figure as additional constraints. 
As a consequence, it becomes attractive to solve the quadratic programme, after discretisation, 
by standard methods such as Wolfe [6] and Beale [7]. 

In practice we preferred to modify Wolfe's method slightly so that in each iteration step of the 
simplex method of linear programming upon which Wolfe's method is based, a meaningful 
normal contact problem is solved. 

It appears from the examples that the pressure distribution, which is discretised as a piece- 
wise linear function on a network of triangles (a facette function), is given with good accuracy in 
points which are not too close to the boundary of the contact area, even when the network is 
crude. The boundary of the contact area, however, needs a very fine mesh of triangles to be 
ascertained with any confidence. 

A preliminary report was given in the 1970 GAMM Tagung at Delft [5]. 

2. The Minimum Principle 

Consider two elastic bodies in contact, see fig. 1, in which the lower body (1) and part of the 
upper body (2) are shown. The distance of a point x of the surface of (1) to body (2) in the 
deformed state is denoted by @. ~ is taken positive when the bodies do not penetrate at x, and 
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negative when they do. The function p (/5, x) satisfies the following requirements : 

p is once differentiable with respect to x and twice in fi; 

f i = 0 c ~ , p = 0  ; 

3p 
3 p  ~ 1 a s  /3 --r 0 (1) 

In other terms, when the bodies are close together, p coincides with/5, but apart from that p is 
practically arbitrary. Since the actual value of/5 is here of importance only when the bodies are 
close together, we are justified in using the term "distance" when we refer to p. 

The surface of the bodies is assumed to consist of four regious, denoted by I to IV, see fig. 1. 
I : There is no contact between the bodies, hence p, the distance in the deformed state of a 

point of the surface of the lower body to the upper body is positive : 

p > 0 in I (2) 

II: The bodies make frictionless contact with each other, and no adhesion of the upper surface 
to the lower surface is present. The distance vanishes: 

p = 0,  no friction or adhesion in II (3) 

III: The bodies adhere to each other. The distance vanishes: 

p = 0 ,  adhesion in III (4) 

IV: In this region, the body is clamped, that is, no displacement can occur: 

u = prescribed in IV,  (5) 

u : displacement of the bodies in accordance with the laws of elasticity and the surface 
loads (6) 

~,~ofrictioo tess adhesion O~J / i  
ontoct 

Figure 1, Two bodies in contact. 

We will denote the displacement of the surface of body (i) by ui, and the traction exerted on 
the surface by p~. 

A variation the internal energy U of the system is given by 

6U-=-6Q+6W (7) 

where W is the work done on the system and Q is the heat supplied to the system. 
In the adiabatic case, 6Q=O so that 

3U = 3W, adiabatic case (8) 

which means that the virtual work done on the system is a total variation. When all changes take 
place isentropically, the condition of equilibrium is that U is minimal, or, in variational terms: 

6S = 0 ; 6 W =  flU > O, for all feasible variations of the energy (9) 

where S means entropy. 
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N o w ,  

6U = 6 W  = 
lwI Iu I I Iu IV  

(pa 6ux + p26uz)dA >= 0 

J. J. Kalker, Y. van Randen 

(10) 

or, since the variations in one region are independent of those in another, 

f (plSut + p25u2)dA > O . (11) 
i 

Each region is considered in turn. 
I: (see (2)). Here, the distance p is non-zero, and consequently 6u~ and 6u2 are arbitrary. So, 

- P = P ~ = p 2 = 0 ; ~  = 0  (12) 
3 I 

where P is the pressure exerted on boundary. 
II : (see (3)). Let n i be the outer normal to body i and let t, be the direction of the projection 

of the surface traction p~ on the surface. Let u,i, P,i, ua, Pa be the components of the displacements 
and tractions in the n;, t~ directions respectively. Then: 

pi6U i = pnibUni"}- ptibUti (13) 

6ua is arbitrary owing to the absence of friction, hence 

P~i = 0.  (14) 

Also, in II, n 2 = - n ~ ,  so that 

- 6 p  - 6u, l +6u,2 < 0 in I I ,  (15) 

since p = 0, and the bodies cannot penetrate. First we take 

(~Unl = -- (~Un2 = 6U = arbitrary in II .  (16) 

Then it is found from (11), (13), and (14), that 

P,1 = Pn2 = - P ,  P:  pressure ; II .  (17) 

So we must have 

f u = f~ -P(bu ,  I+SU, z)dA =>0, (15)=~P > 0 . _  (18) 

III: (see (4)). Owing to adhesion, 6ul =6u2 = arbitrary, and hence Pl = - P 2 :  

p~ = - p 2  ; f = 0 ;  p = O ( I I I ) .  (19) 
d lII 

IV: As a consequence of (5), 3ui=0, and hence 

Pi=arbitrary, 3 u i = 0 ,  ~ = 0.  (20) 
�9 3IV 

Since by (12) and (15) 

P(6unl+r~un2) =-P6p in I and II (21) 

the variation of the energy can according to (12), (18), (19), (20) be written in the form 

0<= 5 U = 6 w  = -P(fu,~+bUnz)dA = + P6pdA (22) 
lwl l  . It~ l 

for all feasible variations of p. 
The implications of eq. (22) are considered: 

f P f p d A ,  p > 0 ,  P and p connected by laws of elasticity (23) 
0 ~ 5 U  = I u I I  
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(1) I: p > O ~ f i p  arbitrary ~ P = 0  

(2) II : p = 0 ~ tip > 0 (no penetrat ion)~ P > 0 (no friction or adhesion). (24) 

I n l a n d l I :  P >O, p > O ,  P p = O .  (24a) 

(3) 6U is a total variation, hence the right-hand side of (22) is also the total variation of the 
internal energy. In fact, 

f PfpdA (]U def )6A 
- Lim - P .  (25)  

(~P ~a--*O i3A g)pdA 

where P is the pressure exerted by one body on the other. 
A Legendre transform is applied to U. Its result is called the contact enthalpy H: 

def f H = P p d A -  U ; (26) 
IuII 

in variational form it reads 

6 H = I  l u l l  6 ( P p ) d A - f  l w l I  P f p d A = f  I u l i  p f P d A ,  (27) 

P > O .  

Evidently, it follows that S P 6P is a total variation. Also, in equilibrium, we have by (24) 

P = 0 ~ p > 0  and 6 P > O ~ p r 3 P > O ;  
in I w II (28) 

P > 0 ~ 6P is arbitrary, p = 0 ~ p 6P = 0 

so that in equilibrium 

6H = ( p 6P dA > 0 ~ H is minimal (29) 
2 

with the auxiliary condition that P > 0, p and P connected by laws of elasticity. 
Analogous to (25) we have 

6H 
P = (30) 

So: 

H = S P p d A - U ;  tSH=Spf iPdA,  P > O ;  p -  

6U = ~ P f p d A ,  p >0 ; P -  

5H 

6P 

6U 
6p 

(31) 

If both U and H are strictly convex, it follows that 

minimise U under the auxiliary condition that p > 0 (32a) 

minimise H under the auxiliary condition that P > 0 (32b) 

are equivalent. H and U are strictly convex in linear elasticity. 
The above theory is perfectly general and applies to any elastic system under the conditions 

of isentropy and absence of dissipation. The enthalpy minimum principle appears to be some- 
what more fruitful in contact theory than the energy minimum principle. 

2.1. Specialisation to Linear Elasticity 

The enthalpy minimum principle will be formulated in the case of the linear, small displacement, 
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small displacement gradient theory of elasticity. Owing to the smallness of displacements and 
gradients, the distance p can be written in the form of the sum of the distance R (x) in the state 
when P = u = 0, and the normal displacement difference w ( x ) = -  u , 1 -  u,2: 

p(x) = R(x)  + w(x) " x surface point 

w(x) = -  u,1 (x)-  u,2(x) R (x): distance in undeformed state. (33) 

R(x) = P(X)[w=O . 

Now, in linear elasticity we have, if u=0  in IV (see (5)), and if there is no adhesion (III= ~ ) :  

U = I . f P w d A ,  u = 0 i n I V ,  I I I = ~  (34) 

H = S PP dA - U = S (PP - I Pw) dA = ~ (PR + Pw - �89 (35) 

H = [. ( P R + I P w ) d A .  

Therefore, the enthalpy minimum principle becomes 

min! H = S ( P R + � 8 9  = U ~- S P R d A  

surface (36) 

auxiliary conditions : P > 0, R given ; 

P and w connected by laws of elasticity. 

Now, strict convexity of the principle and uniqueness of the minimum will be established in 
the case of linear elasticity. Again, III is assumed to vanish. Let Ki(x, x') be the displacement 
in the point X of body i due to a concentrated unit load acting in the surface point x' of (i) 
in the direction of n~ under the auxiliary condition that u~=O in IV. When the pressure P 
vanishes, the equations of elasticity are satisfied by ui-= 0. This displacement field is unique, 
owing to Kirchhoffs uniqueness theorem of small displacement, small displacement gradient 
theory (see, e.g. Love [2], p. 170). The total displacement is hence given by 

u,(x) = f Ki(x, x ' ) { - P ( x ' ) } d a ' ,  (37) 
d IuII 

and the elastic energy U~, given by 

U/ ~--i l~II _lp(x)lli.l.li(x)dA= i f Iwll P(2C)Uni(x)dA 

(3s) 
= v fluII �89 x')P(x)P(x')dAdA' 

is a homogeneous quadratic form in P (x); since Ui is strictly positive definite, the quadratic 
form is a strictly convex quadratic functional of the pressure distribution P. The displacement 
difference reads 

W(X)'~---Unl--Un2: f lull , ~ 2 n i ' K , ( x , x ' ) P ( x ' ) d A '  (39) "= , 
so that the total internal energy 

v = lw(x)P(x)dA = f ,u .  2 P(x)P( ')dAdA' (40) 

is likewise a strictly convex quadratic functional of the pressure distribution P. Since S P R  dA 
is linear in P and hence also convex, the contact enthalpy 

(41) 
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is a strictly convex functional of P. The auxiliary linear inequality condition P > 0  defines a 
convex region of feasibility, so that the problem becomes an infinite dimensional strictly 
convex quadratic programming problem, of which the solution is unique, if we admit only 
continuous solutions. 

3. Three-Dimensional, Non-Hertzian Half-Space Contact Problems 

In the remainder of this paper the case will be considered that the lower body (1) is an elastic 
half-space made of a purely elastic material satisfying Hooke's law with modulus of rigidity G 
and Poisson's ratio a, while the upper body (2) is a rigid indenter of which the edges are never in 
contact with the half-space. It is observed that the theory undergoes only very minor changes 
if the upper body (2) is of a form that can be suitably approximated by an elastic half-space with 
possibly different elastic constants (see [2] p. 193). 

A coordinate system (x, y, z) is introduced in which the bounding plane of the half-space is 
the plane of x and y, and the positive z-axis has the direction of the inner normal to the half- 
space. The origin lies on the surface of the half-space, but is further unspecified. 

It is well-known ([2], p. 191) that the normal component nlK1, of the surface displacement 
at (x, y) due to a unit concentrated load of magnitude 1 in the z-direction acting at (x', y') on 
the half-space is given by 

niK~(x, y, x', y ' ) =  (1 -a)/(2rcGr), r = {(x-x ' )Z  +(y-y ' )Z}  ~ . (42) 

The surface of the rigid indenter is given by 

z = z(x, y) surface of indenter. (43) 

Then, - z ( x ,  y) may be identified with the distance R introduced in sect. 2.1 eq. (33). For, when 
the rigid indenter is in contact with the half-space, the normal of the deformed half-space 
coincides with the normal of the indenter, and since linear elasticity is assumed to be valid, also 
almost with the normal on the undeformed half-space, which is the negative z-axis. So, 

R (x, y) = - z (x, y) undeformed distance (44) 

Of course, R(x, y) must be somewhere negative, otherwise the bodies 'are not in contact and 
the problem is trivial. 

The contact enthalpy minimum principle becomes, by (41), (44), (42) 

m i n : H ( z , P ) =  f - P ( x , y ) z ( x , y ) d x d y  + f f 1 - ~  D D O ~ P(X, y)P(x', y ' )dxdydx'dy' ,  

r = { ( x - x ' )Z+(y -y ' )2 }  ~ ; auxiliary condition: ,P(x, y) >= 0 (45) 

D contains the contact area. 

3.1. The Existence of Non-Hertzian Half-Space Contact Problems 

The objection may be raised that the problem (45) has no physical significance except in the 
Hertzian case when R (x, y) is quadratic; on the ground that else the almost parallelity of the 
normal on the indenter in the contact area to the z-axis cannot be guaranteed. It will now be 
shown that this is not so. 

Consider any smooth function with bounded derivatives z(x, y), and solve Problem (45) 
with it. Let Itl be the maximum of the absolute value of the tangent of the angle of an outer 
normal to z(x, y) and the z-axis for all points of the contact area. If ltl is less than the maximum 
angle t,, for which the linear theory is acceptable, our case is proved. If not, let 

2 = It,,/tl > 0 (46) 

t: tangent of maximum angle occurring, 
t,, : tangent of maximum angle acceptable, 
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and consider another contact problem of which the distance function z is given by 

(x, y) = 2z (x, y) (47) 

and the pressure 15 is denoted by 

P = ,a,P. (48) 

It is easy to see from (45) that the contact enthalpy H(5, P) is connected with the contact 
enthalpy H (z, P ) o f  the original problem by 

H(~, 15)= 22H(z, p) ,  (49) 

while it follows from the positivity of 2 that P > 0 ~  P > 0, so that the feasible regions of both 
problems (45) coincide. Hence, if H(~, P) is at a minimum, so is H(z, P), and vice versa, and then 
the contact areas also coincide. But in that contact area the tangent of the maximum angle 
of the new problem is given by 

= ,~t ~ I~1 = t , . .  (50)  

In a realistic problem, let z (x, y) be the equation of the surface of the rigid indenter, when it 
just touches the half-space. 

The surface is given by 

z(x, y) = z(x, y)+ E,  E: penetration (51) 

when it is pressed into the half-space. Let D be the region of the (x, y) plane in which Itl < I t,,I on 
the indenter. This region contains the tangent point of the indenter with the half-space when 
E = 0. The contact area grows around this point as E increases; so, when the penetration E is 
small enough, the contact area will lie entirely within the region D. 

It remains to show that there exist smooth surfaces, which, however small the contact area, 
cannot be suitably approximated by a paraboloid. 

Such a surface is, for example, 

z (x, y) = - x 4 -  y4 + E (52) 

which has zero curvature at x = y = 0. Another example is a surface with shallow bumps, which 
will be treated as a numerical example, see sect. 4.2. 

3.2. Discretisation. Method of Solution. Implementation. 

The integral (45) is discretised on a mesh of triangles, of which an example is shown in fig. 2. 
Inside a triangle, the pressure P is assumed to be linear, so that the surface spanned by the 
pressure is diamond-like, with many triangular facets. The total normal displacement at a 
point (x, y) can be considered as the sum of the normal displacements at (x, y) due to loads in 
the form of a tetrahedron, see fig. 3. Three pressure tetrahedrons on the same triangles as base 
constitute one facet of the facet function. In the base of each tetrahedron, a local coordinate 
system (s, t) is introduced, see fig. 3. The vertex of the pressure lies at (0, V), and the basis (c~, 0)- 
(fl, 0) is free of pressure. 7 is taken positive. The global coordinate system (x, y) is connected to 
the local system by a known translation and rotation. So the pressure on the triangular base 
of the tetrahedron is 

P(s, t) = Pjt/~, Pj: pressure at (0, 7), i.e. (xj, yj). (53) 

When the pressure Pj is unity, the normal displacement at (xl, yl) (local coordinates: (xi, Y~)) 
due to the tetrahedron is 

( l - -a)  i f tdsdt (54) 
~;ijn -- 2 n ~  (triangle n) ~) { ( X i - -  S) 2 "q- - 2 x (yi-t) }~ 

triangle n: base [(~, 0), (fl, 0)], apex: (0, y) (i.e. (x~, yj)). 
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l / \ / \ / \  

l:igure 2. A triangular mesh with rcfillelnents. 

(a,o) 

, Pi 

o~ ) 

�9 l 
(a,o) 

to, y) pressure vdnishes 

(~,o) 
(13~) 

Figure 3. An element of pressure distribution. 

The integral (54) can be evaluated analytically [4]. Let 

(kt+i ~ ky+l 
I(k, I, t, y) = �89 2-y2) arcsinh \ ~ )  + 2(k2 + 1) § 

E{ ( kl-y~2 (kY+ 1"~2~ Y ( k Z + 2 ) - k l a r c s i n h ( ! k 2 + ~ k l - y ) l  (55) 
x t + k2+l  ] + \ k 2 + l )  / + k2+l  

where arcsinh (x) is the inverse of the hyperbolic sine; then 

2gG 
~_~ %. = I ( - ~ / ~ ,  ~-~ ,  ~, y3-I(-~/~, ~-~,, o, Yi) 

-I(-ct/7, e-Xi, 7, y,)+ I(-c~/y, ~-~,, O, y~) (56) 

The contribution of a unit pressure at the point (x j, y j) to the normal displacement in (x~, y~) 
is the sum of the integrals (54) over all triangles having (x j, y j) as a vertex: 

wij = ~ wij, ; (57) 
n, a l l  t r i ang les  bo rde r ing  on (xj ,  yj) 

the total displacement at (xi, Yi) is then given by 

w(x,, y,) = y, w,jPj. (58) 
j :  a l l  (xj ,  Y.i) 

Let Aj be the area of the union of all triangles bordering on (xi, Yi). Then the total normal force 
is given by 

1 
U = g Z AiPi ; (59) 

i :  a l l  (xi ,  yi) 

where Ai is an area of all triangles bordering on (xi, Yi). 
An approximation of the first term of (45) is given by 

i D P(x, y)R(x, y)dxdy "~3il- ~. AiPiRi, R i = R(x~, Yi) (60) 

and an approximation for the second term of (45) is 
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202 J. J. Kalker, Y. van Randen 

fofD ~ P(x, y)P(x', y')dxdydx'dy'= 1_ ~ AiwijPiPJ (61) 
6 i,j 

Hence, problem (45) becomes 

min" ~ AiPiRi + 1 ~ AiwqPipj 
i i,j 

Ai, Ri, wij constant,  Pi > 0 ,  all i ,  (62) 

a quadratic programming problem, which, as the approximation of a convex mathematical 
programming problem, will, presumably, be convex. 

It can be solved numerically by any quadratic programming routine, e.g. [6, 7]. In our 
implementation, Wolfe's method was used in a modified form described in [4]. This method 
generates by each successive iteration of the linear programming routine, upon which Wolfe's 
method is based, the solution of a normal contact problem corresponding to a rigid indenter 
which remains unaltered during the entire process, but in which the penetration E (see (51)) 
is different. In fact, the penetrations form an increasing sequence. The calculation time of each 
iteration is proportional to m 2, where m is the number of discretisation points (xi, Yi) in D; 
each iteration yields a point of the penetration/total compressive force (E-N) curve. 

When the matrix Aiwq (see (62)) is given, the calculating time to obtain a contact area con- 
taining M points will, roughly speaking, be equal to M times the computer time needed for an 
iteration; that is, it is proportional to Mm 2. The computer time needed to calculate the matrix 
Aiw~j is proportional to 3m2m, if mE is the number of triangles in the mesh. The constant of 
proportionality for the calculation of Aiw~j is, however, very much larger than the constant of 
proportionality of the iteration, owing to the complexity of the formulae (55) and (56). The 
calculating time needed for the matrix A~ w~j can be greatly reduced if, instead of an irregular 
mesh, a regular mesh is chosen, since in that case the coefficient A~w~j depends only on (x~-xj) 
and (yi- y j). So, a factor of the order of m may be gained. In our implementation use was made 
of an irregular mesh, since we wished to have the possibility of refinement of the mesh, see 
fig. 2. 

4. Numerical Results 

The method outlined in sect. 3.2 was applied to the Hertz problem (sect. 4.1) and to a non- 
Hertzian problem (sect. 4.2). 

4.1. A Hertz Problem 

The form of the indenter (see (43), (44)) is given by 

z(x, y) = - xZ/20- yZ/5 + E ,  E : penetration. (63) 

This Hertz problem was solved with a fairly regular triangular mesh of which a part is shown in 
fig. 4. In fig. 5, a contact area is shown containing 84 points with a non-zero pressure, i.e. 
M = 84. g, the ratio of the axes, should be 0.4 according to the theory. The cross in fig. 5 indicates 
the position of maximal pressure. The lines are isobars; the pressure difference between 
successive lines amounts to ~ of the maximum pressure. The outermost line is the line of zero 
pressure, within which the contact area must lie. The exact boundary of the contact area is 
an ellipse. It is seen that the correspondence is bad. In fig. 6a is shown the pressure distribution 

Figure 4. Part of the triangular mesh. 
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0 

Figure 5. Contact area with isobars. Pm maximum pressure. 

TABLE 1 

Numerical and analytical values of N and P(0, 0) of a three dimensional Hertz-problem 

E. 10 M N a" 102 N,. 102 perc. P(0, 0),. 10 P(0, 0),. 10 perc. 
error error 
N ~o (0, O) 

0.08697 10 0.0800 0.0820 2.5 0.0901 0.0963 6.88 
0.1551 20 0.1906 0.1943 1.9 0.1203 0.1220 1.41 
0.2384 30 0.3632 0.3674 1.16 0.1491 0.1510 1.27 
0.3429 40 0.6265 0.6290 0.57 0.1789 0.1815 1.45 
0.4000 50 0.7894 0.7951 0.72 0.1932 0.1952 1.04 
0.5404 60 1.240 1.244 0.3 0.2245 0.2264 0.84 
0.6010 70 1.454 1.460 0.4 0.2368 0.2384 0.68 
0.7003 80 1.829 1.838 0.5 0.2556 0.2569 0.51 
0.8006 87 2.235 2.241 0.3 0.2733 0.2747 0.51 

over the x-axis, in the pressure distribution over the y-axis. The drawn circles represent 
the pressure according to the Hertz theory. It is seen that the correspondence is quite 
good. In table 1 is shown the penetration E, the total normal force obtained by analytic 
means (N,), the total force as found numerically (N,), the exact maximum pressure Pa, and the 
computed maximum pressure P, (0, 0). It is seen that the agreement of Na and N, is slightly 
better than that between Pa and P,. 

Since the contact area was so badly represented, it was decided to investigate the effect of 
local refinement of the net. The result is shown in fig. 7. 

Fig. 7a shows the network, and fig. 7b the result. Again the isobars are at ~ th the maximum 
pressure. The outermost isobar is the numerically obtained boundary of the contact area, and 
the dots represent the exact contact ellipse, based upon the computed total force. 

Two observations may be made. In the first place it is seen that the contact boundary in the 
quadrant where the mesh is refined is quite adequately represented. Secondly it is observed 
that this is so notwithstanding the crudeness of the net in the remaining three quadrants. 

~ -5/6 -;~/3 -~/2 - i  /3 - i  /s 6 ~[6 ~/3 #2 ~ s/6 i" 
12 $ L 6 t l  12 r ~. 3 12 

P(x,o); M=87 P(o,y); M=87 
Figure 6. Pressure distributions. 
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/ "%/ 

/ \  

Figure 7. The Hertz problem with local refinements in the mesh. (a) The mesh (b) The result. Near -~P(0, 0) isobar in 
quadrant I: points of the exact boundary. E=0.07886. N=0.02196. P{0,0)=0.02792 R=x2/20+y2/5--E. W= 
IS {P (s, t)/r} ds dt. r 2 = (x - s) 2 + (y - t) 2. 

4.2. A N o n - H e r t z i a n  Problem 

A non-Her tz i an  p rob lem is treated in which 

- r 6 ( ~  - ~ )  -T6~y  - ~ )  -r ~ (64) z ( x , y ) =  1 .2  ix2 1 , . 2  l x 2 - ~  

This  function has min ima  in the points  6 ,  5), ( - 5 ,  - 5 ) ,  ( - 5 ,  5) and 6 ,  - �89  a m a x i m u m  

Figure 8a. Contact area with isobars M=20. 
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Figure 8b. Contact area with isobars. M = 60. 

205 

Figure 8c. Contact area with isobars M = 90. 

in (0, 0) and saddle points in (�89 0), (0, �89 (- �89 0) and (0, - �89 
In fig. 8 some results are shown. The contact area and several isobars are drawn at different 

stages of the computation~tl proc.ess. The cross marks the maximum of the pressure distribution. 
Fig. 8a gives the result when 20 discretized points have a non-zero pressure. Four  separated 
contact areas are fortned. The four contact areas are not exactly congruent. The contact areas 
in the first and in the third quadrant are exactly congruent and so are the contact areas in the 
second and in the fourth quadrant. This is caused by the symmetry of the triangular network. 
The influence of this symmetry decreases when the total compressive force increases. 

Fig. 8b gives the result when 60 discretized points have a non-zero pressure. Now there is 
one contact area. The origin still has no pressure, so the innermost line offig. 8b is the boundary 
of the contact area. The form of this line shows the influence of the triangular network. Fig. 8c 
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Figure 8d. Contact area with isobars M= 121. 

gives the result when 90 discretized points have a non-zero pressure. Here the origin also has a 
non-zero pressure. Fig. 8d gives the result after the final iteration, that is, when 121 discretized 
points have a non-zero pressure. 

5. Conclusion 

A variational principle governing the frictionless contact between two bodies has been 
established, which is valid both for linear and for non-linear elasticity. In the case of linear 
elasticity it appears to lead to an infinite dimensional convex quadratic programming problem. 
It is applied to the half-space geometry in linear elasticity, and it is established that non- 
Hertzian normal half-space contact problems are physically meaningful. 

A Hertzian and a non-Hertzian normal contact problem were investigated numerically. 
In the case of the Hertzian problem, it was found that the exact relationships between penetra- 
tion, maximum pressure, and total normal force are well satisfied. The form of the contact area 
is given only crudely, unless the mesh is considerably refined. This refinement is, however, 
only needed very close to the edge, since in that case passable results will be obtained. 
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